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Overview  
ESP is an equivalence checker for full custom designs. It enables efficient comparison of 
a Verilog reference design against other Verilog models or a transistor-level SPICE netlist.

ESP provides fast and extensive coverage, enabling users to quickly find bugs and have 
the confidence that the Verilog reference design is functionally identical to other Verilog 
models or its transistor-level implementation.

ESP improves overall verification productivity by simplifying the testing process. It directly 
verifies the SPICE netlist, eliminating the need to manually extract the transistor network 
into a gate-level representation.

Verification Scope
ESP verifies that two different design representations are functionally equivalent. These 
designs may be described as Verilog behavioral models, RTL, UDP’s, gates, transistors, or 
SPICE netlist views (Figure 1).

ESP Fills the Verification Gap

Behavioral Verilog

Custom circuit

wait

fork join case repeat

if always

Create Verilog model

Design spec

Implement circuit

Verilog
behavioral level description

SPICE
transistor level implementation

ESP

ESP

Equivalence
checking

Symbolic
simulation

SPICE

Verilog

Symbolic
simulation

Equivalence
checking

Figure 1: Bridging the verification gap between Verilog and SPICE
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Benefits

Higher Quality

ESP provides fast and complete coverage, enabling you to quickly find bugs and have the confidence that the reference model is 
functionally identical to the transistor model.

Increased Productivity With ESP, you no longer have to derive directed and random tests or have a long delay in releasing models 
while you complete your verification suite.

Easy to Use

ESP directly verifies the SPICE netlist, eliminating the need to manually extract the transistor network into a gate-level representation.

Memories are Changing

Over 50 percent of the total silicon real estate in today’s SoC is consumed by memories. And as designs move toward sub-nanometer 
process technology, functionalities such as redundancy, ECC, BIST, pipelining, etc. are being added to these designs, resulting in 
significantly higher functional complexity.

With few standards and many degrees of freedom, functional verification of embedded memories has become a critical need in the 
SoC design verification process. A key requirement of a successful design is that the behavioral reference model used for SoC full 
chip simulation is functionally identical to the transistor-level netlist that represents the actual implementation.

As the quantity and complexity of memory designs continues to increase, and the project schedules and available resources 
continues to shrink, designers are faced with the challenges of delivering high quality memories on-time and with limited resources.

High Coverage Verification

Traditional methods used to verify memories such as SPICE simulation or cell-based formal verification have their limitations. SPICE 
simulation provides circuit-level accuracy but its coverage is dependent on the vector set created by the engineers and the time 
available for running the simulation. Likewise, cellbased formal verification may provide complete coverage but cannot accurately 
represent the behavior of the transistorlevel netlist.

ESP is based on a patented symbolic simulation technology that combines the power of formal methods with proven event-driven 
simulation technology. ESP leverages symbolic simulation to perform sequential equivalence checking, dramatically increasing the 
quality of functional verification (Figure 2).
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Figure 2: Symbolic simulation propagation—ESP performs formal analysis on output equations to establish equivalence
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ESP simultaneously simulates two different design representations using symbolic inputs while observing the outputs of each 
representation to assure equivalent responses. Instead of applying all possible combinations of binary states, ESP applies a symbol 
that represents all possible input states. This results in coverage of 2N possible states with only N number of symbols (Figure 3A).

ESP is capable of applying formal verification to the circuit-level designs, delivering an easy-to-use verification solution that 
is circuit-aware.

Unlike other methods that require modeling of transistor-level designs to cell-based gate equivalent netlists, ESP directly verifies the 
functional equivalence of the SPICE-level netlist against a behavioral or RTL representation of the design. ESP greatly simplifies the 
inclusion of transistor parasitic effects in the functional model by automatically calculating the RC value based on transistor length, 
width, and process technology (Figure 3B).
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Differentiating Features

Power Integrity Verification

The Power Integrity Verification flow detects common low-power design errors and power-down/sleep-mode failures. When errors 
are found, this flow also generates SPICE vectors for analysis and debug (Figure 4).
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Figure 4: ESP power-integrity verification

Figure 3B: Direct verification of behavioral Verilog, RTL, gate,  
Liberty .DB, switch and transistor-level design netlists

Figure 3A: Using symbols as inputs delivers high coverage 
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Redundancy Verification Flow

ESP uses formal techniques to quickly verify that the redundancy logic added to the memory array to replace defective cells and 
improve yields is performing correctly (Figure 5).
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Figure 5: Redundancy verification flow

Verdi Interface

Using the Verdi3 advanced debug platform environment already used by most RTL designers, ESP provides a graphical way to debug 
mismatches in transistor-level design using Interactive Signal Tracing (IST). ESP also provides resistance, capacitance and delay 
information for events on schematic nets as well as traditional Verilog “1”, “0”, “X” and “Z” logic values. Using Verdi3 dramatically 
reduces the overall verification debug time and improves productivity by providing a common debug platform for logic and circuit 
designers alike (Figure 6).

Figure 6: Verdi3 interface provides graphical debug environment

Device Model Simulation

ESP Device Model Simulation allows you to perform ESP verification for new device technologies, e.g. FinFET and FDSOI, as soon as 
your SPICE circuit simulator supports that technology. It supports multiple circuit simulators and transparently handles CMI and TMI 
encrypted models (Figure 7).
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Tcl script sets up and invokes circuit
simulations, collects and packages results

ESP 
esp_shell> set_process –i –f <EDM>
esp_shell> read_verilog –r <DESIGN.v>
esp_shell> read_spice –i <DESIGN.sp>
esp_shell> verify
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Figure 7: Generating ESP device models from SPICE models

ESP Additional Features
Full Verilog (RTL, Structural and Behavioral) Language

The tool supports all constructs from the Verilog language, including behavioral structures, such as fork, join, and task, etc.

Timing Dependent Functionality

It calculates transition time as a function of symbolic states and transistor widths and lengths, and therefore supports timing 
dependent functionality.

Automated Error Validation

It spawns SPICE simulation to validate verification differences and provides generated waveforms for debugging.

Distributing Testbench Execution

The tool supports simulation of testbenches in parallel using LSF and Oracle GRID (SGE), and therefore reducing time-to-results.

Integrated Test Suite Management

A designers’ productivity is improved by automating multiple test bench simulations and producing a merged coverage report.

Interactive Signal Tracing (IST)

IST provides unique features to help debug verification errors. By using a simple command-based interface or Verdi schematic 
display, a designer can back trace incorrect or suspicious values in the design. It also tracks internal signal transitions and reports 
calculated transistor strengths.

Transistor Level Verification

Transistors are natively supported by ESP and it does not depend upon gate extraction or pattern matching techniques.

Asynchronous Timing

It supports asynchronous clocks, pulsed logic and self-timed logic.
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No State Point Mapping

It verifies functional equivalency of designs with different structures, without any dependency on isomorphic state mapping.

High Capacity

It has the ability to verify over one billion transistor designs on a single workstation.

Typical Applications

• Compiled memories

• Custom memories (i.e. CAM, SRAM, ROM, etc.)

• Datapath blocks

• Programmable Logic (FPGA)

• Problematic / Dynamic circuits

• Standard cell and I/O libraries

Conclusion
With the increasing complexity and the importance of memories in modern ICs, there is a clear need for specialized tools and 
techniques for the design and verification of embedded memory blocks. ESP brings formal technology into the memory designer’s 
hands and raises their confidence in the quality of the design while simplifying the testing process and increasing overall 
verification productivity.
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