SYNOPSYS

\ DATASHEET

Custom Compiler

Best-in-Class Technology for Custom Design

Accelerating Robust
Custom Design

synopsys.com

Overview

Custom Compiler™ is a fresh, modern solution for full-custom analog, custom digital,
and mixed-signal integrated circuit (IC) design. As the heart of the Synopsys Custom
Design Platform, Custom Compiler provides design entry, simulation management and
analysis, and custom layout editing features. Designed to handle the most challenging
requirements of FINFET process technologies, it delivers industry-leading productivity,
performance, and ease-of-use while remaining easy to adopt for users of legacy tools.

™

Design Entry and Simulation

Custom Compiler provides a highly productive environment for design entry

and simulation, with strong features for mixed-signal design, debug, simulation
management, analysis, and reporting. Schematic entry has been streamlined with
automatic wiring, symbol generation, on-canvas editing of parameters, and more.
The Custom Compiler schematic editor includes helpful debugging aids such as

a power domain analyzer for checking power supplies and inherited connections
across the design hierarchy and a hierarchical net tracer for tracing signals across
the design. It also includes a design comparison feature that reports changes
between schematics.

Text and schematic views can be freely combined for mixed-signal designs—a
language-sensitive editor for Verilog is included. Navigation, cross-probing, and
back-annotation of simulation results are available for both schematics and text
views. Custom Compiler also has strong features for mixed-signal partitioning and
visualization, such as parameterizable interface elements.

g
BEL-BR@ADDA AAAHATHAN Y
wan) veatory 3 € G WA 8 10

5 % oih A

o (e SYNOPSYS — 0

eNx 5 EFT

ATEBBE

& E

une: 0, Conmn: 0

Figure 1: Custom Compiler mixed-signal design entry and debug

http://synopsys.com

Custom Compiler is integrated with Synopsys’ PrimeSim™ HSPICE®, PrimeSim SPICE, PrimeSim Pro, and PrimeSim XA circuit
simulators and PrimeSim Reliability Analyis technologies. Integrations with many third-party simulators are also available. Simulation
support includes PrimeWave™ Design Environment, a comprehensive and flexible environment for setup, run and debug for corners,
multi-testbench sweeps, Monte Carlo, Aging/EMIR, and other analyses. PrimeWave Design Environment features a powerful
TCL-based scripting capability enabling customization of simulation campaigns including grid-based job distribution and monitoring.

PrimeWave Design Environment has a built-in high-capacity waveform viewer that supports advanced visualization and charting
capabilities including statistical analysis, histograms, and scatterplots. It also provides HTML-based reporting to facilitate
design reviews.

12 il =
! = - — = S o -
; / 2 ———— 2 — B
/ o — -
-
overshook mad/ rseTme mind falfime settingTmeRsng tR R
tran Lran tran tran tran ran tran ltran
jone > 14 <600 > 033 (0.23n,0.. Hone Hane
48.4419m 1.50884 52.8340n [0.9004. 0.246708n | 0.111607u 1.0641... 1.1669...
4BA115m 150806 5A.7100n [M00RM 0.24655dn | 0.146378u 7

40.9725m 1.50800 537076n D.00A.C 0.246588n 0.113760u
257305m LE6Z04 GR2LGIN 00930 02394100 0.153736u
25.9622m L.67387 BA0E59A | 0.3340.. 02392930 0.127559u
25.5244m L7390 BIAIN L 0.3335.. 0.239430n 0.125354u
438124m 1.50783 55.7173n [0.2991.0 0.267007n | 0.0779772u
43.3400m 150788 $5.6613n 0.2000.. 0.268738n 0.115406u
43.6654m 150786 $5.7076n 0.2007.. 0.286835n 0.153437u
20.2147m 1.67240 8580250 0.3327.. 0.260073n | 0.152460u
23394lm 1.67267 552800 0.3327.. 0.260021n | 0.111230u
228757m 1.67261 G5.S6G4R. | 0.3326.. 0.260068R | 0.0909185u 1.0075.. 1.1817...

Figure 2: Charting, reporting, and statistical analysis

Custom Layout Editing with Visually Assisted Automation

Custom Compiler includes fast and user-friendly versions of the familiar polygon editing features that users need and then amps
up layout team productivity with its pioneering visually-assisted automation (VAA) flow. VAA is an innovative approach to reducing
layout effort that has been proven to deliver 2-10X better productivity—especially for difficult FinFET-based designs. VAA leverages
the graphical use model familiar to layout designers to provide automation without requiring manual constraint entry. With Custom
Compiler, routine and repetitive tasks are dealt with automatically without extra setup.

Library Manager
Tools Design View Hierarchy Create Edit Query Options Verification Window Help
X |.7.906 ¥ [11.710 DX: D Dist: 0.000 _ Selection: 0 B] full Constraint Group: s
SEE-HeaWA AAAEIOAN A # @ 8 (8 oo HE2E = () EEE)W - 2
(No Command) History & & [

Object/Layer Panel a®
) Visible:/«] All [¥ Valid ™
8 Y =r————— Select: [+] All [# Valid <
® | | welldrawing %
i] D]1 2 3456 7
U |
o | | objects
=] &Y 116 E
& il M7
&]ms
) 9 LE
- izl Lo
@ -
=] N s drawing []
o9 . psub subnode
drw drawing
-
E3 i diff drawing
+] difr2s drawing
B | I diff18 drawing
)] ! diffa3 drawing
- pplus drawing
; LI . nplus drawing
- nat drawing
& - poly drawing
3 cont drawing =
B [+ |[[l nvell drawing)

Figure 3: Fast and user-friendly custom layout editing

The Custom Compiler schematic-driven layout capabilities are the foundation of the VAA flow. Schematic-driven layout reduces
layout time by checking for connectivity and device parameter mismatches during layout. The Custom Compiler schematic-driven
layout has several advanced features. For example, the Custom Compiler integrated symbolic editor lets layout designers place
devices into patterns—without worrying about design rule details. This feature is especially useful for creating a matched analog
layout or custom digital cells. Custom Compiler includes a pattern router for completing device-level connections.

BB S

Figure 4: Advanced schematic-driven layout features: symbolic editor (L) and pattern router (R)

A kA key element of the Custom Compiler VAA flow is the support for layout templates. Layout templates are a way for designers to
save and reuse placement and routing patterns. These templates can be applied to generate a layout for similar circuits—even if they
don't have the same transistor sizes. Custom Compiler searches the user's template library for templates that match a circuit and
generates a DRC-correct layout based on the selected template automatically.

Create Template Use Template

Layout Created by Generated Template New Designs Layout Created
Expert Designer from Template

“

Layout example
_’ B

Figure 5: Custom Compiler's user-definable templates enable rapid reuse of design know-how

Custom Compiler includes built-in layout verification features that reduce costly design iterations by catching physical and electrical
errors during layout—before signoff verification. These include a design rule checking engine that is fast enough to perform checks
dynamically during editing. Other built-in verification features include electromigration checking, and resistance and capacitance
extraction. These are available in Custom Compiler for layout designers to check their work as they draw their layout. Unlike other
“electrically aware” tools, Custom Compiler’s capacitance extraction uses Synopsys’ gold-standard StarRC™ engine.

Custom Compiler works seamlessly with IC Compiler™ Il to provide a unified solution for custom and digital implementation. It can
open, edit and save IC Compiler Il databases at any stage in the design process. Users can freely move back and forth between
Custom Compiler and IC Compiler I, using the commands of each to successively refine their designs. IC Compiler Il users can
perform full-custom edits to their digital designs with Custom Compiler. Likewise, Custom Compiler users can use IC Compiler Il
to implement custom digital blocks in their designs. The bi-direction flow between the two tools ensures that the digital and analog

3 Dissiillbriry yreg mmp feyoiit group sthatching! (Edting) - Lavou Edzar - Curtom Carnplin
] uieary

Tosls Design View He

e - vrag_amp layout
n S0L Window Help

ot 00090 Selsstiors 0 il & oro: |oF Onmodication Rue Set: [dofaut = | % Comtraint Group

AH G AN A PP [isetciog) - Srwy g [0 211572 e A&
Flocrical (7=

Design Kavgator

Elactrical Reporter

Rasistance | Capacrance | EM_| Options

et v Draw

N

Group Resuts By et~

Fiter Dispiay By

0.00018

0.00018

LI

Expart To Cansale

Raset to choose & hew net 1o rapod.

objactayer Pansl
Visibie:+ a1 ¢ Valid

- couplingTatalis

v
v otat spactance. Leagthas7.7 fum)
. From Coupling CifF)
= - 20285
o
viom 049978
B
= o2k
x
4
L]
] Ta Coupling CIF) =«
o
L
B
a

Welp || Dataata | meset Repart || Espen

B+ ERsounoan pic

s7.3580
27.9857

rasion

Coupfing/Tetalt) =
aoesiez

aoesiez

00851

cancel

Figure 6: Electrical reporter checks resistance, capacitance, and electromigration during layout

portions of the design remain synchronized.

Custom Compiler

sMBOEEAXT ARG

Lossless

bidirectional
connection

IC Compiler Il

Mo dod XV-6333, 38813

Figure 7: Custom Compiler can open, edit, and save IC Compiler Il design databases

Design/Layout Collaboration

Custom Compiler includes features that make it easy to communicate design intent and achieve analog design closure.

Custom Compiler Circuit
Schematics & Analysis Simulation

Design Early Signoff
intent parasitics review

Parasitic

Custom Compiler Layout .
Extraction

Custom Compiler Environment

Figure 8: Custom Compiler supports close design/layout collaboration

For communicating design intent, designers can specify constraints on the schematic in the traditional way, or they can use
templates, which are a powerful new way to specify groups of constraints. Designers can extract templates from previous designs
for reuse. Templates include constraints for placement and routing patterns, dummy devices, and even guard rings. Designers simply
choose the template they want to use in the layout—they don't need to enter constraints manually. Custom Compiler annotates
currents and voltages from simulation onto the layout to enable electromigration and voltage-dependent design rule checking during
layout creation.

Figure 9: Design intent communicated via constraints (L) and current/voltage annotations (R)

The Custom Compiler Extraction Fusion and DRC Fusion technologies reduce the time it takes to achieve analog design closure.
Extraction Fusion enables layout parasitics to be extracted from a partially completed layout. This provides circuit designers and
layout designers with earlier feedback on layout parasitics. Circuit designers can use early parasitics to refine their designs and avoid
layout rework. Layout designers can use early parasitics to confirm they are meeting design specifications. DRC Fusion enables live
design rule checking during layout using IC Validator™. By checking for errors during layout, designers can reduce the number of late-
cycle iterations caused by design rule violations discovered during final signoff checking.

Open and Customizable Environment

Custom Compiler is natively based on the OpenAccess database, so it is straightforward for users of non-Synopsys custom design
tools to adopt. It includes a rich set of open APIs that make it easy to customize the user experience and integrate third-party tools.
Third-party tool integrations are available for design data management, circuit simulation, physical verification, parasitic extraction,
and other applications. Supported extension languages include TCL, Python and C++. Custom Compiler supports the interoperable
process design kit (iPDK) standard. Custom Compiler iPDKs are available for most advanced node processes.

For more information about Custom Compiler, visit https://customcompiler.info/.

S‘ n[]PS‘ SO ©2022 Synopsys, Inc. All rights reserved. Synopsys is a trademark of Synopsys, Inc. in the United States and other countries. A list of Synopsys trademarks is
available at http://www.synopsys.com/copyright.html. All other names mentioned herein are trademarks or registered trademarks of their respective owners.
Silicon to Software 05/26/22.CS904802819 Custom Compiler ds.

http://www.synopsys.com/copyright.html
https://www.synopsys.com/implementation-and-signoff/custom-design-platform/custom-compiler.html

